ColabFold --------- Easy to use protein structure and complex prediction using AlphaFold2 and Alphafold2-multimer. Local `ColabFold `_ is made available on the cluster as a shared :doc:`Apptainer ` container image. This should be run on a **GPU Compute** partition. You can use the :code:`apptainer/colabfold` module which will add convenient aliases for: :code:`colabfold_batch`, :code:`colabfold_search`, :code:`colabfold_split_msas`, which will run within the container; The alias will also bind-mount the AlphaFold2 weights cache path (:code:`/opt/colabfold/alpha2_weights_cache` on the nodes) into the container on :code:`/cache`. See the `LocalColabFold documentation `_ for usage information. Example: .. code-block:: bash module load apptainer/colabfold # The following is required to use aliases in a non-interactive/SLURM batch script: shopt -s expand_aliases colabfold_batch ./input.fasta ./out/ An example Slurm script to run ColabFold on the cluster is provided below: .. code-block:: bash #!/bin/bash #SBATCH --job-name=colabfold # Job name #SBATCH --partition=aoraki_gpu # Partition (queue) name #SBATCH --nodes=1 # Number of nodes #SBATCH --ntasks-per-node=1 # Number of tasks (1 task per node) #SBATCH --cpus-per-task=12 # Number of CPU cores per task #SBATCH --gres=gpu:1 # Number of GPUs required #SBATCH --mem=96G # Job memory request #SBATCH --time=10:00:00 # Time limit hrs:min:sec #SBATCH --mail-user=USERNAME@otago.ac.nz #SBATCH --output=colabfold%j.log # Standard output log # Set variables base_name="$1" output_fasta="${base_name}_getorf.output.fa" # Load the apptainer/colabfold module (assuming it's in your PATH) module load apptainer/colabfold shopt -s expand_aliases # Enable alias expansion # Check loaded modules (for debugging) module list # Ensure PATH includes module binaries (for debugging) echo "Current PATH: $PATH" # Run colabfold_batch command using alias colabfold_batch "./$output_fasta" ./out/